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Abstract 1	

The finely-tuned balance between sources and sinks determines plant 2	

resource partitioning and regulates growth and development. Understanding 3	

and measuring metabolic indicators of source or sink limitation forms a vital 4	

part of global efforts to increase crop yield for future food security. We 5	

measured metabolic profiles of Cucurbita pepo (zucchini) grown in the field 6	

under carbon sink limitation and control conditions. We demonstrate that 7	

these profiles can be measured non-destructively using hyperspectral 8	

reflectance at both leaf and canopy scales. Total non-structural 9	

carbohydrates (TNC) increased 82% in sink-limited plants; leaf mass per 10	

unit area (LMA) increased 38%; free amino acids increased 22%. Partial 11	

least-squares regression models link these measured functional traits with 12	

reflectance data, enabling high-throughput estimation of traits comprising 13	

the sink limitation response. Leaf- and canopy-scale models for TNC had R2 14	

values of 0.93 and 0.64 and %RMSE of 13% and 38% respectively. For LMA, 15	

R2 values were 0.91 and 0.60 and %RMSE 7% and 14%; for free amino 16	

acids, R2 was 0.53 and 0.21 with %RMSE 20% and 26%. Remote sensing 17	

can enable accurate, rapid detection of sink limitation in the field at the leaf 18	

and canopy scale, greatly expanding our ability to understand and measure 19	

metabolic responses to stress. 20	

 21	

 22	
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Introduction 23	

 24	

Plant breeders are faced with a significant challenge: the need to develop 25	

high-yielding crop varieties, which are resilient to future climate change 26	

(Ainsworth, Rogers & Leakey 2008b; Ort et al. 2015; Simkin, López-27	

Calcagno & Raines 2019). Recent work in model crops has demonstrated 28	

that improvements in yield can be realised by engineering more efficient 29	

photosynthesis (Kromdijk et al. 2016; South, Cavanagh, Liu & Ort 2019; 30	

Degen, Worrall & Carmo-Silva 2020; Li et al. 2020; López-Calcagno et al. 31	

2020). However, whilst increased CO2 assimilation (carbon source activity) 32	

can be shown to enhance yield, the response is often not matched by an 33	

equivalent increase in plant growth and yield (carbon sink activity). Elevated 34	

CO2 research, including free-air concentration enrichment (FACE) 35	

experiments, has shown that relatively large stimulations in photosynthesis 36	

do not always translate to commensurate increases in growth and yield 37	

providing evidence for a sink limitation bottleneck (Long, Ainsworth, Leakey, 38	

Nösberger & Ort 2006; Ainsworth, Leakey, Ort & Long 2008a; Leakey et al. 39	

2009; Sanz-Sáez et al. 2010). Thus, carbon sink limitation can reduce the 40	

potential for enhanced yield resulting from genetically engineered 41	

improvements to source activity and the anticipated yield benefit of rising 42	

atmospheric [CO2]. To fully capitalise on genetically enhanced and CO2-43	

stimulated photosynthesis, carbon sink limitation must be minimised. 44	
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Indeed, an integrated understanding of carbon sources and sinks is 45	

increasingly recognised as a vital component of enhancing global food 46	

production (White, Rogers, Rees & Osborne 2016; Smith, Rao & Merchant 47	

2018; Fernie et al. 2020). If breeders are to achieve the goal of minimising 48	

sink limitation (Fernie et al. 2020), it is essential to understand how carbon 49	

sink limitation may be measured in a high-throughput manner, in order to 50	

facilitate rapid screening for sink limitation in breeding programs (Reynolds 51	

& Langridge 2016). 52	

 53	

We address this need by defining the metabolic signature of carbon sink 54	

limitation in field-grown Cucurbita pepo and then developing a high-55	

throughput system for measuring this sink limitation non-destructively using 56	

“hyperspectral”, or high spectral resolution, reflectance data. Unlike several 57	

other limitations on growth that are of interest to breeders, such as disease 58	

resistance or drought resilience in response to pathogen or water stress, 59	

there is often no visual phenotype associated with sink limitation. This 60	

means that effective measurement of sink stress relies upon destructive 61	

harvesting, making continual monitoring difficult to achieve. Furthermore, 62	

carrying out the biochemical analysis required for detailing the sink stress 63	

profile is time consuming and expensive. For these reasons, a non-64	

destructive, high-throughput, spectroscopic approach to monitoring sink 65	

stress is a desirable tool for crop breeders. 66	
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 67	

For the first time, we examine the source:sink balance of field-grown plants 68	

using hyperspectral data. The metabolic profile of carbon sink limitation has 69	

been extensively characterised (Stitt & Krapp 1999; Bénard et al. 2015; 70	

Burnett, Rogers, Rees & Osborne 2016). Chief among the key traits of a 71	

carbon sink-limited plant is an increase in leaf carbohydrate content, which 72	

has been phenomenologically and mechanistically linked to reduced sink 73	

strength (Pollock & Cairns 1991; Farrar 1996; Rogers & Ainsworth 2006; 74	

Ainsworth & Bush 2011). It has also been well established that reflectance 75	

data can be used to estimate a suite of leaf traits using a range of 76	

approaches, including empirical partial least-squares regression (PLSR) 77	

modelling to build relationships between spectral data and measured traits. 78	

This spectra-trait PLSR approach provides a rapid, high-throughput  means 79	

for the estimation of biochemical traits of interest (Serbin, Singh, McNeil, 80	

Kingdon & Townsend 2014; Yendrek et al. 2017; Silva-Perez et al. 2018; 81	

Ely, Burnett, Lieberman-Cribbin, Serbin & Rogers 2019; Meacham-Hensold 82	

et al. 2019; Cotrozzi & Couture 2020), including those associated with 83	

source-sink balance and carbon and nitrogen status. Here, we build on these 84	

advances in two key ways: (1) we evaluate the spectroscopic approach for 85	

identifying sink limitation in the production environment and (2) we scale up 86	

from leaf- to canopy-level acquisition of hyperspectral data using a boom-87	

mounted spectrometer – a key step in moving to truly high-throughput 88	
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monitoring using remote sensing tools. We evaluated the spectra-trait 89	

modelling approach in field-grown C. pepo with a sink removal treatment, to 90	

determine if the relationships between reflectance and leaf traits could be 91	

used for predicting key indicators of source:sink imbalance in the field. We 92	

also investigated the capability of linear discriminant analysis (LDA) and 93	

partial least squares discriminant analysis (PLS-DA) for identification of 94	

metabolic stress using measured leaf traits and using raw hyperspectral 95	

data, respectively. These discriminant analyses were used to build class-96	

prediction models which demonstrated the use of trait and spectral data to 97	

distinguish between plants in the control or sink removal treatment. 98	

Importantly, we demonstrate with each of our approaches that sink 99	

limitation may be successfully detected at both the leaf and canopy scale.  100	

 101	

We tested the following hypotheses: 1) There will be significant metabolic 102	

and structural differences between leaves of sink-limited and control field-103	

grown C. pepo plants. 2) These metabolic and structural differences can be 104	

detected in the field using hyperspectral reflectance data acquired at the leaf 105	

scale. 3) These metabolic and structural differences can also be detected 106	

remotely using hyperspectral reflectance data collected at the canopy scale.  107	
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Materials and Methods 108	

 109	

Plant material and experimental treatments 110	

 111	

There are diverse ways to experimentally manipulate the carbon source:sink 112	

balance, including: defoliation, debudding or sink removal; manipulation of 113	

temperature, light, nitrogen or CO2 levels; and transgenic modifications 114	

(Ainsworth, Rogers, Nelson & Long 2004; White et al. 2016). Direct 115	

manipulations of the carbon sink in field experiments are comparatively rare. 116	

Here, we reduced the carbon sink of field-grown C. pepo by removing 117	

developing fruits, throughout the duration of the experiment. The continual 118	

removal of fruits is a standard agricultural practice for harvesting zucchini, 119	

although we removed fruits early in their development.	 120	

 121	

C. pepo was selected for this experimental work because it rapidly forms a 122	

full canopy, making this species an ideal target for our proof-of-concept 123	

study of canopy reflectance. C. pepo is a suitable model crop for sink 124	

manipulation experiments because its fruits are highly visible due to large 125	

colorful flowers, there are relatively few fruits per plant, and the fruits are 126	

easily removed. Furthermore, the local environment is suitable for growing 127	

C. pepo, which is commonly cultivated as a commercial crop on Long Island.  128	

 129	
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Seeds of C. pepo L. var. Dunja were obtained from the Long Island 130	

Cauliflower Association (Riverhead, New York, USA) and grown in a research 131	

field at Brookhaven National Laboratory, Upton, New York, USA in 2019 132	

(latitude 40.864466, longitude 72.875158, 18 meter elevation). Following 133	

initial pH testing, the field was prepared with lime prior to sowing to ensure 134	

an appropriate soil pH for C. pepo. Seeds were sown on DOY 158 at a 135	

density to achieve full canopy coverage in eighteen 10m x 10m plots, each 136	

surrounded by a border of C. pepo, of the same width as 1.5 times the 137	

height of mature C. pepo (estimated from previous experiments) to give a 138	

total sown area of 12m x 12m. The large plot size was selected to facilitate 139	

canopy- and UAS-level data collection. In addition to the sink manipulation 140	

experiment described here, the field was also used for a drought 141	

experiment. Six plots underwent sink manipulation and six plots underwent 142	

drought treatment; six plots served as controls. For the sink manipulation 143	

treatment, developing fruits were removed from each plant twice per week 144	

beginning DOY 196 by using a short-bladed serrated harvesting knife to slice 145	

the midpoint of the short fleshy stem at the base of the fruit. The use of a 146	

complete, regularly maintained sink removal treatment gave rise to large 147	

variation in metabolite contents in order to fill the ‘trait space’ (the 148	

numerical range of data points), facilitating the development of robust PLSR 149	

models. For the drought treatment, following germination and plant 150	

establishment irrigation was withheld from drought plots resulting in soil 151	
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dry-down during periods of no precipitation. Irrigation was maintained at 152	

standard local agricultural levels in the sink manipulation and control plots. 153	

The drought treatment began on DOY 186 and lasted until the end of the 154	

experiment. Data from drought plots were not used in the main study 155	

presented here, but were included in PLSR model to increase model 156	

performance by further increasing the range of trait values, thus giving more 157	

robust data prediction capabilities. Data were collected from each of the 158	

three plot types on every measurement date. Meteorological data are 159	

reported in Supplementary Fig. 1. 160	

 161	

Experimental schedule 162	

 163	

Leaf and canopy spectral data were collected twice per week for the duration 164	

of the experiment (from the initiation of the sink removal treatment until 165	

senescence of the control plants, Fig. 3A). All spectral data collection and 166	

leaf harvesting was always performed within three hours of solar noon (i.e. 167	

between 10:00 and 16:00 EDT), because canopy spectral data collection 168	

requires the sun to be high in the sky to provide even illumination of the 169	

leaves. Leaf harvests for obtaining biochemical traits were alternately paired 170	

with either leaf spectral data collection or canopy spectral data collection on 171	

any given day, in order to facilitate the development of PLSR models at both 172	

the leaf and canopy scales. Conducting full diurnal time courses of leaf 173	



	 10	

metabolite measurements was beyond the scope of this work and not 174	

possible given the constraints of sampling canopy spectra around solar noon. 175	

However, the strong experimental treatment used to build predictive models 176	

should enable the prediction of metabolite contents at different times of day 177	

via leaf level spectral data and this will be an important future application of 178	

the work presented here.   179	

 180	

Leaf spectral data 181	

 182	

For leaf spectral data collection, three sets of random coordinates were 183	

selected on each measurement day and applied to each plot. The newest 184	

fully-expanded leaf at each coordinate was selected for measurement. First, 185	

leaf temperature was measured using a handheld infrared radiometer 186	

(Apogee Instruments, Logan, Utah, USA). Immediately afterwards, spectral 187	

data were collected using a PSR+ full-range (continuous 350-2500nm) 188	

spectroradiometer (Spectral Evolution, Lawrence, Massachusetts, USA), 189	

connected to a leaf clip assembly with an internal, calibrated light source 190	

(SVC, Poughkeepsie, New York, USA). The spectroradiometer was calibrated 191	

using a LabSphere Spectralon® reflectance standard disc (LabSphere, Inc., 192	

North Sutton, New Hampshire, USA). For each leaf, three spectral 193	

measurements were taken across the adaxial surface, and then averaged to 194	

give a single spectrum. 195	
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Canopy spectral data 196	

 197	

For canopy spectral data collection, three evenly spaced locations were 198	

measured within the central region of each plot. The spectroradiometer was 199	

fitted with a 14 degree lens (Spectral Evolution, Lawrence, Massachusetts, 200	

USA) and positioned 2 meters above the canopy on a truck-mounted boom 201	

(Fig. 4B). The spectroradiometer was calibrated using a LabSphere 202	

Spectralon® reflectance standard plate (LabSphere, Inc., North Sutton, New 203	

Hampshire, USA). Leaf temperature in the area viewed by the 204	

spectroradiometer was first measured using the infrared radiometer, 205	

positioned above the canopy. For each location within the plot, three to five 206	

spectral measurements were performed (immediately following temperature 207	

measurement) and then averaged to give a single spectrum. When it was 208	

not possible to measure canopy spectra on all experimental plots due to 209	

logistical or weather constraints, the omitted plots were noted and prioritised 210	

for measurement on the next measurement date, ensuring an overall even 211	

coverage of canopy spectral data for all experimental plots.  212	

 213	

Physiological data 214	

 215	

Measurements of ΦPSII and relative chlorophyll content were performed using 216	

the PhotosynQ MultispeQ V 2.0 (Kuhlgert et al. 2016) on the newest fully-217	
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expanded leaf immediately following leaf spectral data collection. The 218	

MultispeQ measurements were made on light-adapted leaves, at ambient 219	

conditions matching the incident photosynthetically active radiation (PAR) 220	

and the temperature at the leaf surface, using the ‘Photosynthesis RIDES’  221	

protocol available online at photosynq.org. 222	

 223	

In addition to the regular measurements of ΦPSII performed on all plots 224	

throughout the experiment, the response of photosynthesis to intercellular 225	

CO2 concentration (A/Ci curves) were performed on a subset of plots on four 226	

dates. However, this data collection was constrained by instrument 227	

availability. These data, presented in Supplementary Fig. 2, were collected in 228	

the field between the hours of 06:00-14:00, using a LI-6800 Portable 229	

Photosynthesis System (LI-COR Biosciences, Lincoln, Nebraska, USA). A 230	

diurnal measurement of photosynthesis was performed prior to 231	

measurement of A/Ci curves to ensure that measurements were completed 232	

before the onset of the afternoon suppression of photosynthesis occurring 233	

naturally in plants in all treatments. Light response curves were performed 234	

to determine the saturating irradiance to be used in A/Ci curves: 2000 µmol 235	

photons m-2 s-1. A/Ci curves were performed on the newest fully-expanded 236	

and physiologically mature leaf. Leaves were acclimated in the leaf cuvette 237	

until steady-state A and gs were reached (20-45 minutes). Each A/Ci curve 238	

began at 400 µmol mol-1 CO2 and the CO2 concentration was decreased then 239	
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increased in a stepwise manner as described previously (Rogers, Serbin, Ely, 240	

Sloan & Wullschleger 2017).  241	

 242	

Steady-state values of Ci/Ca and Asat at 400 µmol mol-1 CO2 were obtained 243	

from the first point of the A/Ci curve. Vc,max was estimated from A/Ci 244	

response curves and should therefore be considered as apparent Vc,max since 245	

mesophyll conductance was not measured, meaning that values are based 246	

on intercellular rather than chloroplastic [CO2]. Estimation of Vc,max was 247	

made using the kinetic parameters and their temperature dependence as 248	

presented previously (Bernacchi, Singsaas, Pimentel, Portis & Long 2001; 249	

Bernacchi et al. 2013) following the method described in detail by Rogers et 250	

al (2017). The average root-mean-squared error (RMSE) associated with 251	

fitting Vc,max was 1.26 (< 1% of estimated Vc,max) ± 0.88 (standard 252	

deviation). Values of Vc,max were normalised to 25°C using an Arrhenius 253	

function (Bernacchi et al. 2013). 254	

 255	

Sample collection 256	

 257	

Leaves were either harvested immediately following leaf spectral data 258	

collection for each plant, or following canopy spectral data collection for each 259	

area of the plot. For harvests paired with leaf spectra, the leaf that had been 260	

used for spectral data collection was harvested. For harvests paired with 261	
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canopy spectra, the newest fully-expanded leaf from the center of the area 262	

viewed by the spectroradiometer was harvested. Each leaf was divided into 263	

two equal halves along the midrib. Discs from one half were punched evenly 264	

across the leaf surface, placed into an aluminium foil packet and 265	

immediately flash frozen in liquid nitrogen, at the field site. The second half 266	

of the leaf was kept intact and sealed in a plastic bag containing a damp 267	

paper towel, to prevent desiccation during the sampling of the remaining 268	

leaves. These intact leaf halves were placed into a cooler at the field site to 269	

prevent sample deterioration. After harvesting was complete, all samples 270	

were returned to the laboratory. Frozen samples were stored at -70°C for 271	

subsequent biochemical analysis. The intact half of each leaf was punched 272	

into discs of known area distributed evenly across the leaf surface, weighed, 273	

and transferred to a drying oven for the subsequent determination of leaf 274	

mass per unit leaf area (LMA) and leaf water content (LWC). 275	

 276	

Leaf trait analysis 277	

 278	

Leaf mass per unit leaf area was obtained from the measured area and dry 279	

mass of oven-dried leaves. Leaf water content (LWC) was obtained from leaf 280	

fresh mass at time of harvest and leaf dry mass after oven drying, according 281	

to the following formula:  282	

 283	
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𝐿𝑊𝐶 % =
(𝑙𝑒𝑎𝑓 𝑓𝑟𝑒𝑠ℎ 𝑚𝑎𝑠𝑠 − 𝑙𝑒𝑎𝑓 𝑑𝑟𝑦 𝑚𝑎𝑠𝑠)

𝑙𝑒𝑎𝑓 𝑓𝑟𝑒𝑠ℎ 𝑚𝑎𝑠𝑠  𝑥 100 

 284	

Analysis of leaf carbon- and nitrogen-containing metabolites (glucose, 285	

fructose, sucrose, starch, amino acids and protein) was performed as 286	

described previously (Burnett et al. 2016). In brief, sequential ethanol 287	

extractions were used to extract metabolites from frozen tissue. For sugars 288	

(glucose, fructose and sucrose) a continuous enzymatic substrate assay was 289	

performed in the presence of ATP and NADP; the NADPH signal associated 290	

with each sugar was measured at 340 nm (ELx808 Plate Reader, BioTek, 291	

Winooski, VT, USA). Amino acids were quantified using fluorescamine in the 292	

presence of sodium borate buffer, with fluorescence measured at 360 nm 293	

excitation, 460 nm emission and 40 nm bandwidth (Synergy HT Plate 294	

Reader, BioTek, Winooski, VT, USA) after 5 min dark incubation. Protein was 295	

quantified from the pellets resulting from the ethanol extraction using a 296	

commercially available kit (Pierce BCA protein assay kit, Thermoscientific, 297	

Rockford, IL, USA) following solubilisation in 0.1M sodium hydroxide. For 298	

starch, pellet samples were first neutralised with hydrochloric acid following 299	

the protein assay. An overnight enzymatic digest was performed and the 300	

resultant sugars were quantified as described above. For each assay, a 301	

standard curve was included on every plate to ensure accurate metabolite 302	

quantification. For a more detailed description of these methods, refer to 303	

Burnett et al. (2016). Biochemical traits were expressed on a per unit area 304	
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basis, derived from the relationship between fresh mass and leaf area that 305	

was obtained from the oven-dried samples. 306	

 307	

Values of carbohydrate-corrected LMA (ccLMA) were obtained from the total 308	

non-structural carbohydrate data (TNC; the sum of glucose, fructose, 309	

sucrose and starch) as follows. TNC, expressed as mmol glucose equivalents 310	

m-2, was first multiplied by the millimolar mass of glucose to give TNC, g m-311	

2. This value was then multiplied by the area of each sample to give TNC, g 312	

sample-1. Finally ccLMA (g m-2) was obtained using the following equation: 313	

 314	

𝑐𝑐𝐿𝑀𝐴 =
𝑠𝑎𝑚𝑝𝑙𝑒 𝑑𝑟𝑦 𝑚𝑎𝑠𝑠 − 𝑠𝑎𝑚𝑝𝑙𝑒 𝑇𝑁𝐶 𝑚𝑎𝑠𝑠

𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑟𝑒𝑎  

 315	

UAS flight data 316	

 317	

An unoccupied aerial system (UAS) flight was performed on DOY 226, the 318	

last day of the measurement period, using an ‘Osprey’ system as described 319	

previously (Yang et al. 2020). Since the flight was carried out at the end of 320	

the measurement period, only the RGB data were analysed for this study; 321	

the full data are available online as detailed at the end of the manuscript. 322	

Green Chromatic Coordinate (GCC; Richardson 2019) was obtained for each 323	

experimental plot using RGB camera data following the methods of Yang et 324	
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al. (Yang et al. 2020). This metric enables standardisation of RGB data 325	

between different cameras, facilitating comparison with future work. 326	

 327	

Data analysis 328	

 329	

All data analysis was performed in the R open source software environment 330	

(R Core Team 2019). For analysis of leaf traits, depicted in Figs. 1 and 2 and 331	

Table 1, each trait was analysed using repeated-measures ANOVA. Analysis 332	

was performed at the plot level (n=6 plots for each treatment). For each 333	

measurement date, the within-plot values obtained from three leaves per 334	

plot, were first averaged to give one value for each trait per plot and per 335	

measurement date. Next, if required, data were log- or square-root-336	

transformed prior to analysis to satisfy requirements for normally distributed 337	

data. ANOVA was used to test for effects of and interactions between 338	

treatment categories (control and sink-limited) and time into the sink 339	

manipulation experiment (DOY), with repeated measurements at the plot 340	

level. The significance level was set to p < 0.05, with individual significance 341	

levels reported in Table 1. A post-hoc Tukey test was performed to 342	

determine the dates upon which differences between treatments were 343	

significant. 344	

 345	
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Partial least-squares regression (PLSR) was used to predict leaf traits from 346	

spectral data using the ‘pls’ package (Mevik & Wehrens 2007) in R. PLSR 347	

models included drought plants, control plants and sink-limited plants to 348	

increase the predictive power by extending the range of trait values and the 349	

number of samples. Measured starch and total non-structural carbohydrate 350	

(TNC) data were square-root-transformed prior to modelling; untransformed 351	

data are always presented in the manuscript. A small set of samples was 352	

removed from the dataset prior to fitting, due to outlier residual errors, for 353	

each trait. 354	

 355	

Leaf-level PLSR models were built using all spectral wavelengths between 356	

500 and 2400nm with the exception of TNC and free amino acids when the 357	

range 1100-2400nm was used to improve accuracy of model prediction. 358	

Canopy-level PLSR models were built using the spectral wavelengths 500-359	

1800nm and 1950-2400nm in order to eliminate the 1800-1950nm region 360	

containing atmospheric water interference. For canopy-level PLSR models for 361	

TNC and starch, the starting wavelength was 1100nm rather than 500nm to 362	

improve the model fit. Spectral data did not undergo any transformation 363	

prior to model building. 364	

 365	

For all PLSR models, observational data points were subset according to 366	

treatment then randomly assigned to datasets for calibration (80% of the 367	
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data) and validation (20% of the data). Component selection and model 368	

calibration were carried out as described previously (Serbin et al. 2014; Ely 369	

et al. 2019). The R2 and root-mean-squared error (RMSE) of prediction of 370	

the validation data set was used to assess each model and the variable 371	

importance of projection (VIP) was used for qualitative evaluation of model 372	

predictor variables as described previously (Wold, Sjöström & Eriksson 373	

2001).  374	

 375	

Partial least squares discriminant analysis (PLS-DA) was performed in R 376	

using the ‘caret’ package (Kuhn 2008), in accordance with methods 377	

developed previously (Serbin et al. 2014; Ely et al. 2019; Cotrozzi & Couture 378	

2020; Gold et al. 2020). PLS-DA models used 75% of the data for model 379	

training and 25% for model testing, with 10-fold cross-validated resampling 380	

repeated five times, and receiver-operator curves (ROC)-optimisation of the 381	

number of components. Models ran until convergence was reached (up to 382	

100 iterations). The linear discriminant analysis (LDA) model was built using 383	

75% of the data for model training and 25% for model testing; the LDA 384	

model was trained with leave-one-out calibration and ROC-optimisation of 385	

the number of components. The average results from ten model iterations 386	

are reported. 387	

 388	
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GCC was analysed using a t-test of plot-level mean GCC values for sink-389	

limited and control plots (Supplementary Fig. 3).  390	
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Results 391	

 392	

Photosynthesis is maintained in sink-limited plants 393	

The sink removal treatment began on day of year (DOY) 196 and plants 394	

were measured from the onset of treatment until DOY 226 when control 395	

plants were senescing. Physiological, metabolic and structural traits were 396	

measured (Figs. 1, 2). Averaged over the experiment, leaf temperature was 397	

3% higher in sink limited plants; leaf temperature was 6% higher in sink 398	

limited plants at the final time point. Temperature differences were 399	

significant across the experiment taken as a whole; when individual 400	

measurement dates were analysed, significant differences in temperature 401	

occurred on DOY 205, 206, 214, 221 (Fig. 1A; Table 1). Photosystem II 402	

operating efficiency (Fig. 1B; Table 1) was not affected by the sink 403	

manipulation. Leaf chlorophyll content was not affected by the sink 404	

manipulation except for DOY 200 when it was significantly higher in sink 405	

manipulated plants (Fig. 1C; Table 1). The lack of overall photosynthetic 406	

response displayed in data collected throughout the experiment (Fig. 1B) 407	

was supported by a small dataset of A/Ci curves which showed no clear 408	

trend in Asat or Vc,max although gs was lower in sink-limited plants (F1,8 = 7.2, 409	

p < 0.05; Supplementary Fig. 2).  410	

 411	

 412	
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Sink limitation affects leaf metabolism and structure 413	

 414	

Leaf structure was markedly affected by the sink manipulation treatment. 415	

There was a 5% decrease in leaf water content (LWC) in the sink 416	

manipulation treatment and the magnitude of this effect increased with time, 417	

with a highly significant time x treatment interaction (Fig. 2A; Table 1). We 418	

observed a 38% increase in LMA (mean for all time points) overall, 419	

displaying the highest increase of 57% at the final time point, and a highly 420	

significant time x treatment interaction (Fig. 2B; Table 1). The difference 421	

between control and sink-limited plants was significant on DOY 200 for LMA, 422	

and for both LMA and LWC on all measurement dates from DOY 205 423	

onwards. About half of the overall increase in the raw LMA data presented 424	

here was attributable to an increased total non-structural carbohydrate 425	

(TNC) content in sink-limited plants; carbohydrate-corrected values of LMA 426	

(ccLMA) still showed an overall 20% increase in sink-limited plants (see 427	

Supplementary Data). 428	

 429	

All leaf metabolites were analysed on an area basis. Free amino acid content  430	

increased by 22% in sink-limited plants and decreased over time in both 431	

control and sink-limited plants with no significant interaction (Fig. 2C; Table 432	

1). However, for individual dates the difference was significant on DOY 200, 433	

205, 207, 214 and 218. 434	
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 435	

Sink-limited plants displayed a strong and highly significant increase in TNC, 436	

which became more marked over time (Fig. 2H; Table 1). The increase in 437	

TNC was attributable in part to an increased sugar content (Fig. 2D,E,F; 438	

Table 1) but was dominated by a marked increase in starch (Fig. 2G; Table 439	

1). Glucose was significantly higher in sink-limited plants on DOY 207, 214, 440	

218, 221; fructose was significantly lower in sink-limited plants on DOY 200 441	

then significantly higher on DOY 214, 218, 221; sucrose was significantly 442	

higher in sink-limited plants on DOY 211, 214, 218 and 221. Both starch and 443	

TNC were significantly higher in sink-limited plants on all measurement 444	

dates from DOY 205 onwards. Overall, TNC increased by 82% in sink-limited 445	

plants. There was a highly significant time x treatment interaction for each 446	

carbohydrate measured; the difference between control and sink-limited 447	

plants increased as time progressed (Fig. 2D,E,F,G,H; Table 1).  448	

 449	

Leaf protein content increased 8% overall in sink-limited plants, and the 450	

magnitude of this difference was greatest at the final time point when 451	

protein was 25% higher than in the control plants; there was a significant 452	

time x treatment interaction and the difference between treatments was 453	

significant on DOY 207, 218 and 221 (Fig. 2I; Table 1).  454	

 455	

 456	
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Plot-level greenness is maintained in sink-limited plants 457	

 458	

Sink-limited plots stayed green for longer than control plots at the end of the 459	

experiment, due to delayed senescence (Fig. 3). Using UAS imagery, we 460	

observed that the Green Chromatic Coordinate (GCC) was significantly 461	

higher in sink-limited than control plants (t = 5.8, p < 0.001, df = 10; 462	

Supplementary Fig. 3).  This response was also visually evident in the 463	

standard red-green-blue (RGB) image where sink-limited plots were visually 464	

greener compared to the control plots (Fig. 3A). 465	

 466	

Partial least-squares regression successfully predicts metabolic and 467	

structural traits from reflectance at leaf and canopy scales 468	

 469	

Reflectance data were collected at both leaf and canopy scales using a leaf 470	

clip (Fig. 4A) and truck-mounted boom (Fig. 4B). At both scales, partial 471	

least-squares regression (PLSR) successfully estimated leaf metabolite 472	

contents and structural traits associated with sink limitation (Fig. 5). In 473	

general, models performed better at the leaf level, with a higher R2 when 474	

compared to the canopy-level model for the same trait, and a lower RMSE 475	

for six of nine leaf-level models when compared to canopy-level models (Fig. 476	

5; data shown are for independent model validation in each case). R2 values 477	

for leaf-level models ranged from 0.53 to 0.93 demonstrating strong 478	
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predictive capabilities (Fig. 5). Canopy-level models also showed acceptable 479	

predictive capabilities for many traits. Five of the nine models had R2 values 480	

greater than 0.5 (Fig. 5) with the highest R2 of 0.78 for LWC. The %RMSE 481	

(RMSE expressed as a percentage of the mean of the observed values for a 482	

trait) ranged from 2% to 37% for leaf models, and from 2% to 38% for 483	

canopy models. For leaf models, %RMSE was <20% for all traits except 484	

sugars, and was 2% for LWC, 7% for LMA, 20% for free amino acids, 11% 485	

for protein and 13% for TNC. For canopy models, %RMSE was 2% for LWC, 486	

14% for LMA, 26% for free amino acids, 10% for protein and 38% for TNC. 487	

 488	

Sink stress detection may be achieved using measured traits or 489	

hyperspectral reflectance 490	

 491	

Linear discriminant analysis (LDA) was used to determine whether or not 492	

plants were exposed to sink stress, based on metabolic and structural traits 493	

(glucose, fructose, sucrose, starch, protein, free amino acids, LMA and 494	

LWC). When LDA was performed iteratively, including cumulative data for 495	

each successive date and the preceding dates, class detection accuracy 496	

improved over time as the treatment effect became stronger. The maximum 497	

overall accuracy was 86% when all time points were included (Fig. 6), and 498	

the area under the receiver-operator curve (AUC-ROC) was 0.93. Partial 499	

least squares discriminant analysis (PLS-DA) using raw spectral data also 500	
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showed a good capability for distinguishing between sink-limited and control 501	

plants, with detection success of 78% at the leaf level (AUC-ROC = 0.86) 502	

and 89% for canopy level spectra (AUC-ROC = 0.96), including all measured 503	

time points (Fig. 6). The greater success of detection with canopy spectra is 504	

likely due to the fact that compared to leaf-scale data collection, canopy 505	

spectral data collection began slightly later into the experiment. This would 506	

enhance the overall treatment effect observed in canopy data, since the 507	

metabolic differences between treatments generally increased over time as 508	

the sink stress became more pronounced. After we omitted the leaf 509	

measurements that did not overlap with those from the canopy collections in 510	

the PLS-DA (i.e. leaf and canopy measurement periods were aligned, with 511	

the earliest part of the experiment omitted) the detection accuracy at the 512	

leaf scale was 93% (AUC-ROC = 0.99). The equivalent measurement for LDA 513	

using measured leaf traits yielded a prediction accuracy of 94% (Fig. 6). 514	

Measured traits and hyperspectral reflectance are both successful at 515	

distinguishing between sink-limited and control plants (Fig. 6).  516	
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Discussion 517	

 518	

We conducted a sink manipulation experiment in field-grown C. pepo and 519	

demonstrated that we could detect the marked and significant effect of sink 520	

limitation (hypothesis 1) on leaf metabolic and structural traits using 521	

spectroscopy. Our key finding was that this approach can be scaled 522	

effectively from the leaf level to the canopy scale (hypotheses 2 and 3). 523	

Collectively our results demonstrate the robustness of the spectroscopy 524	

approach, the potential to detect sink limitation non-destructively and 525	

remotely, and to do that in a real-world agricultural setting emphasising the 526	

value of the approach for breeders and producers.  527	

 528	

The metabolic signature of sink stress 529	

 530	

Sink strength is the product of sink size multiplied by sink activity (Geiger & 531	

Shieh 1993; White et al. 2016). Removing developing fruits dramatically 532	

decreases carbon sink strength within the plant, by removing a critical 533	

carbon sink. However, fruit removal also increases the sink activity by 534	

stimulating the development of new fruits, which have a strong carbon 535	

requirement, thereby increasing sink strength within the plant. In the 536	

manipulation performed here, the net effect on sink strength was an overall 537	

decrease, since the increase in sink activity was outweighed by the larger 538	
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decrease in sink size, and this is confirmed by the trends in carbohydrate 539	

levels observed in sink-limited plants (Fig. 2D,E,F,G,H).  540	

 541	

Like most biotic and abiotic plant stresses, sink limitation has a metabolic 542	

signature. Here, sink limitation led to significant increases in the content of 543	

non-structural carbohydrates (Fig. 2D,E,F,G,H) and free amino acids (Fig. 544	

2C) in addition to leaf structural changes (Fig. 2A,B). Increased levels of 545	

non-structural carbohydrates – both each carbohydrate metabolite 546	

individually, and the total pool (TNC) – is consistent with the literature on 547	

carbon sink limitation; our sink removal treatment for manipulation of the 548	

source:sink balance therefore elicited the expected response. Sink-limited 549	

plants had increased levels of leaf carbohydrates likely due to decreased 550	

export from the leaf caused by reduced sink demand (Stitt & Krapp 1999; 551	

Ainsworth & Bush 2011; Burnett et al. 2016).  552	

 553	

The observed leaf structural changes (LWC and LMA; Fig. 2A,B; Table 1) are 554	

consistent with the development of smaller, longer-lasting leaves; 555	

furthermore, these leaf characteristics are themselves consistent with the 556	

delayed leaf senescence and maintained leaf protein content observed in 557	

sink-limited plants (Figs. 2I and 3). Delayed leaf senescence has been 558	

observed in multiple FACE experiments in which elevated [CO2] increased 559	

the carbon source:sink balance nondestructively, further indicating that our 560	
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findings are commensurate with a source:sink imbalance (Kontunen-Soppela 561	

et al. 2010; McGrath, Karnosky & Ainsworth 2010; Tallis et al. 2010). 562	

 563	

Detection of metabolic traits at leaf and canopy scales using 564	

hyperspectral reflectance 565	

 566	

Since the sink limitation treatment was not accompanied by a change in 567	

photosynthesis (Figs. 1,2; Table 1; Supplementary Fig. 2), screening for sink 568	

limitation in zucchini plants requires insight into the metabolic response. 569	

Biochemical measurements are not only time-consuming and costly to 570	

perform but are also destructive, meaning that a leaf-level study cannot 571	

track an individual leaf over its lifespan. In addition, the delay in obtaining 572	

results from destructive analysis is substantial preventing rapid feedback to 573	

breeders or farmers. Therefore the use of high-throughput, non-destructive 574	

hyperspectral data, which can readily be analysed to understand the 575	

metabolic status of a plant (at the leaf level) or field plot (at the canopy 576	

level), enables a great step forward in the efficiency and capability of sink 577	

stress monitoring. Our study provides the first field-level example of non-578	

destructive monitoring of sink stress via metabolite prediction.  579	

 580	

Whilst leaf-level PLSR models generally had a higher capability for predicting 581	

traits from spectral data than their canopy-level counterparts (Fig. 5), 582	
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models at both scales were effective at predicting a suite of leaf traits. 583	

Importantly, predictions of starch, which forms the vast majority of TNC, 584	

and leaf structural traits (LWC and LMA) were successful at both leaf and 585	

canopy levels with R2 > 0.60 in each case (Fig. 5A,B,G,H). Since TNC was 586	

the major metabolic indicator of sink limitation in this study, this indicates 587	

effective prediction of sink limitation at the canopy scale. To our knowledge 588	

this is the first time that canopy-level predictive models have been used to 589	

examine the traits underpinning crop sink limitation. 590	

 591	

Perspectives on scaling up trait detection 592	

 593	

Scaling detection of traits from the leaf level to the canopy level is a critical 594	

step to enable high throughput measurement of plant traits (Asner & Martin 595	

2008; Kokaly, Asner, Ollinger, Martin & Wessman 2009; Virlet, 596	

Sabermanesh, Sadeghi-Tehran & Hawkesford 2017; Herrmann et al. 2018) 597	

To measure traits at the canopy level, the time of day must be carefully 598	

considered given the reliance on natural illumination of the leaves by solar 599	

irradiation, rather than artificial illumination from the light sources typically 600	

used in a leaf clip. Leaf orientation and canopy structure also become 601	

relevant for canopy-scale measurements of reflectance (Ollinger 2011); gaps 602	

between plants must be avoided in order to obtain a reliable spectral 603	

measurement of the core vegetation component. Finally, atmospheric water 604	
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vapor can interfere with the signal in the main water absorption regions 605	

(Gao, Heidebrecht & Goetz 1993) and must be removed from the spectral 606	

data prior to analysis. Here, we successfully demonstrated the use of 607	

canopy-level spectral data for detecting sink limitation, representing a major 608	

advance in the phenotyping of sink limitation – a recognised critical target 609	

for crop breeding (Dusenge, Duarte & Way 2019; Fernie et al. 2020). 610	

 611	

Scaling the hyperspectral monitoring of sink stress to the UAS level using 612	

UAS-mounted hyperspectral sensors (Yang et al. 2017, 2020; Shiklomanov 613	

et al. 2019) is the next step for increasing throughput and the ability to 614	

scale the technique, as has been shown for phenotyping of wheat height in 615	

response to a nitrogen treatment (Holman et al. 2016) and canopy 616	

characteristics of avocado trees (Tu, Johansen, Phinn & Robson 2019). 617	

However, it must be noted that scaling up to the UAS level is not without its 618	

technical, economic, and legislative challenges (Hunt & Daughtry 2018; 619	

Coops, Goodbody & Cao 2019). In terms of technical limitations, UAS-620	

mounted spectral cameras often have a narrower range of wavebands and a 621	

lower waveband resolution than hyperspectral sensors used on the ground, 622	

e.g. 10 nm resolution in the study by Basso, Fiorentino, Cammarano & 623	

Schulthess (2016), reducing measurement precision. In the present study, 624	

we used the Green Chromatic Coordinate (GCC), which is a simple metric 625	

derived from RGB camera data, to demonstrate that sink-limited plots were 626	
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greener than control plots at the end of the experimental period, measured 627	

at the UAS level. This finding is likely related to underlying physiological and 628	

biochemical traits, since GCC is linked to pigments and plant health as well 629	

as leaf area index (Liu et al. 2015; Reid et al. 2016; Liu et al. 2018). Simple 630	

metrics such as GCC provide a less expensive approach to airborne crop 631	

monitoring, and UAS measurements frequently rely on spectral indices 632	

rather than taking the full-spectrum trait prediction approach demonstrated 633	

using our leaf- and canopy-level data. However, for detecting small changes 634	

and understanding the underlying metabolic differences, hyperspectral data 635	

provide far more detailed information than spectral indices. Hyperspectral 636	

data – in contrast to multispectral data – are especially suited to 637	

measurements of nutrient status as well as other stresses such as pathogens 638	

when using UAS systems (Maes & Steppe 2019) and it will be important to 639	

use high spectral resolution when scaling up our detailed approach for stress 640	

detection from the leaf- and canopy-level to the UAS level.  641	

 642	

The detection of metabolic and structural signatures using leaf reflectance 643	

facilitates faster screening for crop breeding as well as the development of 644	

precision agriculture techniques. In the plant breeding context, 645	

understanding sink limitation – whether at the leaf, canopy or field scale – 646	

enables the development of crops better able to translate additional 647	

photosynthate resulting from improved carbon assimilation (Kromdijk et al. 648	
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2016; South et al. 2019; Degen et al. 2020; Li et al. 2020; López-Calcagno 649	

et al. 2020)  or future elevated CO2 (Ainsworth et al. 2008b; Leakey et al. 650	

2009) into enhanced yield. In the precision agriculture context, monitoring 651	

sink limitation in major crops may be used to inform the timing of fertiliser 652	

application to improve the balance between carbon and nitrogen resources in 653	

the plant (Basso et al. 2016; Maresma, Ariza, Martínez, Lloveras & Martínez-654	

Casasnovas 2016; Maes & Steppe 2019). Both carbon and nitrogen can 655	

place limits on crop growth, development and yield (Burnett et al. 2016; 656	

Burnett, Rogers, Rees & Osborne 2018; White et al. 2016), and both source 657	

and sink limitations must be addressed for successful breeding of our future 658	

crops (White et al. 2016; Fernie et al. 2020). 659	

 660	

In summary, source:sink balance underpins plant growth and survival and is 661	

a key factor affecting crop yield. In order to realise crop yield increases, an 662	

integrated understanding of carbon and nitrogen sources and sinks is 663	

essential. Remote sensing provides a unique opportunity for detailed, high-664	

throughput phenotyping of plant physiological and metabolic traits, enabling 665	

us to understand limitations on yield caused by sink limitation. Here we have 666	

demonstrated the use of leaf reflectance data to examine vital plant 667	

processes in the production environment, measuring source:sink balance 668	

remotely in field-grown plants for the first time, enabling rapid and non-669	

invasive measurements of sink limitation. 670	
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Tables 
Table 1 Leaf traits shown in Figs. 1 and 2 analysed with repeated-measures 
ANOVA. Effects of treatment (control and sink manipulation), time (DOY) and the 
interactive effect are shown.  
Trait Effect F-value P-value 
Leaf temperature Treatment 

Time 
Time x Treatment 

F(1,8) = 20.1  
F(10,94) = 59.6 
F(10,94) = 1.1  

P < 0.01 
P < 0.001 

ns 
ΦPSII Treatment 

Time 
Time x Treatment 

F(1,10) = 0.3 
F(6,60) = 29.2  
F(6,60) = 1.4 

ns 
P < 0.001 

ns 
Chlorophyll Treatment 

Time 
Time x Treatment 

F(1,10) = 1.1 
F(6,60) = 32.5  
F(6,60) = 1.5 

ns 
P < 0.001 

ns 
Leaf water content Treatment 

Time 
Time x Treatment 

F(1,6) = 104.5  
F(8,63) = 27.4 
F(8,63) = 6.0 

P < 0.001 
P < 0.001 
P < 0.001 

LMA Treatment 
Time 
Time x Treatment 

F(1,6) = 190.7 
F(8,63) = 53.3 
F(8,63) = 21.8 

P < 0.001 
P < 0.001 
P < 0.001 

Free amino acids Treatment 
Time 
Time x Treatment 

F(1,8) = 14.8 
F(7,61) = 4.9 
F(7,61) = 1.4 

P < 0.01 
P < 0.001 

ns 
Glucose Treatment 

Time 
Time x Treatment 

F(1,8) = 13.0 
F(7,61) = 13.6 
F(7,61) = 12.3 

P < 0.01 
P < 0.001 
P < 0.001 

Fructose Treatment 
Time 
Time x Treatment 

F(1,8) = 1.4 
F(7,61) = 20.1 
F(7,61) = 9.1 

ns 
P < 0.001 
P < 0.001 

Sucrose Treatment 
Time 
Time x Treatment 

F(1,8) = 12.4 
F(7,61) = 14.3 
F(7,61) = 3.8 

P < 0.01 
P < 0.001 
P < 0.01 

Starch Treatment 
Time 
Time x Treatment 

F(1,8) = 134.9 
F(7,61) = 35.5 
F(7,61) = 20.4 

P < 0.001 
P < 0.001 
P < 0.001 

TNC Treatment 
Time 
Time x Treatment 

F(1,8) = 199.8 
F(7,61) = 37.4 
F(7,61) = 28.8 

P < 0.001 
P < 0.001 
P < 0.001 

Protein Treatment 
Time 
Time x Treatment 

F(1,8) = 10.9 
F(7,61) = 29.8 
F(7,61) = 2.3 

P < 0.05 
P < 0.001 
P < 0.05 
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Table 2 Numbers of datapoints in calibration (cal.) and validation (val.) datasets 
and number of model components (nComps) for partial least square regression 
(PLSR) models presented in Fig. 5.  

 Leaf-scale PLSR Canopy-scale PLSR 
Trait Cal. Val. nComps Cal. Val. nComps 
LWC 192 49 7 71 20 9 
LMA 190 48 9 71 19 11 
Free amino acids 187 48 10 70 19 10 
Glucose 191 49 11 70 18 6 
Fructose 189 48 11 68 18 5 
Sucrose 188 49 9 70 18 9 
Starch 180 47 10 67 19 6 
TNC 178 47 9 67 19 6 
Protein 189 50 8 71 19 8 
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Figure Legends 

Figure 1 Leaf temperature was higher in sink-limited plants, but photosynthesis-
related traits did not change. A, leaf temperature; B, efficiency of photosystem II 
(ΦPSII); C, relative chlorophyll content. For leaf temperature (A), n = 6 plots each 
reporting an average value of 3-6 reps per plot measured at leaf and/or canopy 
scales on any given date; the final two time points show the average of 5 sink-
limited plots and 4 control plots. For MultispeQ measurements (B,C), n = 6 plots 
with an average of 3 reps taken for the plot-level value. Means ± standard error of 
plot-level data are shown.  
 
Figure 2 Leaf metabolic and structural traits in sink-limited (grey points) and 
control (black points) plants. A, leaf water content (LWC); B, leaf mass per unit 
area (LMA); C, free amino acids; D, glucose; E, fructose; F, sucrose; G, starch; H, 
total non-structural carbohydrates (TNC); I, Protein. TNC is the sum of glucose, 
fructose, sucrose and starch. For leaf metabolic traits (C,D,E,F,G,H,I), n = 6 plots 
with the exception of measurements made 9, 15 and 25 days into treatment when 
5 sink-limited plots and 4 control plots were measured. The data for each plot 
represents an average value from three harvested leaves. For leaf structural traits 
(A,B), sampling was identical to leaf metabolic traits with the exception of the final 
time point on which samples were taken for LWC and LMA only, with n = 2 sink-
limited and n = 2 control plots. Means ± standard error of plot-level data are 
shown.  
 
Figure 3 An aerial image of the field (A) shows a prolonged green phenotype in 
plants which underwent the sink removal treatment. Plot positions are indicated as 
follows: green = control, beige = drought, pink = sink removal (B). Drought plants 
were not used in the main study but were included in PLSR model building to 
increase model performance (see Methods).  
 
Figure 4 Photographs show spectral data collection at leaf (A) and canopy (B) 
levels. The spectroradiometer is referenced using a white Spectralon® disc for leaf-
level measurements, and a white Spectralon® plate for canopy-level 
measurements, shown in (B).  
 
Figure 5 Partial least squares regression (PLSR) models demonstrate that spectral 
data may be used to predict leaf structural (A,B) and metabolic (C,D,E,F,G,H,I) 
traits at both leaf and canopy scales. Each plot shows the validation results for leaf-
level (black points) and canopy-level (grey points) models. Plots show the 
relationship between observed traits from traditional measurements, and predicted 
traits derived from spectral data. The dashed line shows the 1:1 relationship and R2 
and RMSE values are provided for each model (black and grey text is used for leaf 
and canopy models, respectively). For leaf PLSR models, calibration datasets 
included between 178 and 192 datapoints, and validation datasets included 
between 47 and 50 datapoints (Table 2). For canopy PLSR models, there were 
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between 67 and 71 calibration datapoints, and between 18 and 20 validation 
datapoints (Table 2). 
 
Figure 6 Linear discriminant analysis (LDA) using measured leaf traits and partial 
least squares discriminant analysis (PLS-DA) using raw spectral data measured at 
leaf and canopy scales successfully predict whether or not plants were sink-limited. 
The grey line represents the 50% (equal to chance) detection rate. AUC-ROC values 
are reported in the text. Asterisks indicate when a subset of data was used, with 
aligned leaf and canopy measurement periods, to facilitate comparison with 
canopy-level data, for which collection began later than leaf-level data. 
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Figures 

 
 
Figure 1 Leaf temperature was higher in sink-limited plants (grey points), but 
photosynthesis-related traits did not change compared to controls (black points). A, 
leaf temperature; B, efficiency of photosystem II (ΦPSII); C, relative chlorophyll 
content. For leaf temperature (A), n = 6 plots each reporting an average value of 3-
6 reps per plot measured at leaf and/or canopy scales on any given date; the final 
two time points show the average of 5 sink-limited plots and 4 control plots. For 
MultispeQ measurements (B,C), n = 6 plots with an average of 3 reps taken for the 
plot-level value. Means ± standard error of plot-level data are shown.   
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Figure 2 Leaf metabolic and structural traits in sink-limited (grey points) and 
control (black points) plants. A, leaf water content (LWC); B, leaf mass per unit 
area (LMA); C, free amino acids; D, glucose; E, fructose; F, sucrose; G, starch; H, 
total non-structural carbohydrates (TNC); I, Protein. TNC is the sum of glucose, 
fructose, sucrose and starch. For leaf metabolic traits (C,D,E,F,G,H,I), n = 6 plots 
with the exception of measurements made 9, 15 and 25 days into treatment when 
5 sink-limited plots and 4 control plots were measured. The data for each plot 
represents an average value from three harvested leaves. For leaf structural traits 
(A,B), sampling was identical to leaf metabolic traits with the exception of the final 
time point on which samples were taken for LWC and LMA only, with n = 2 sink-
limited and n = 2 control plots. Means ± standard error of plot-level data are 
shown. 
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Figure 3 An aerial image of the field (A) shows a prolonged green phenotype in 
plants which underwent the sink removal treatment. Plot positions are indicated as 
follows: green = control, beige = drought, pink = sink removal (B). Drought plants 
were not used in the main study but were included in PLSR model building to 
increase model performance (see Methods). 

A

B
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Figure 4 Photographs show spectral data collection at leaf (A) and canopy (B) 
levels. The spectroradiometer is referenced using a white Spectralon® disc for leaf-
level measurements, and a white Spectralon® plate for canopy-level 
measurements, shown in (B). 
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Figure 5 Partial least squares regression (PLSR) models demonstrate that spectral 
data may be used to predict leaf structural (A,B) and metabolic (C,D,E,F,G,H,I) 
traits at both leaf and canopy scales. Each plot shows the validation results for leaf-
level (black points) and canopy-level (grey points) models. Plots show the 
relationship between observed traits from traditional measurements, and predicted 
traits derived from spectral data. The dashed line shows the 1:1 relationship and R2 
and RMSE values are provided for each model (black and grey text is used for leaf 
and canopy models, respectively). For leaf PLSR models, calibration datasets 
included between 178 and 192 datapoints, and validation datasets included 
between 47 and 50 datapoints (Table 2). For canopy PLSR models, there were 
between 67 and 71 calibration datapoints, and between 18 and 20 validation 
datapoints (Table 2). 
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Figure 6 Linear discriminant analysis (LDA) using measured leaf traits and partial 
least squares discriminant analysis (PLS-DA) using raw spectral data measured at 
leaf and canopy scales successfully predict whether or not plants were sink-limited. 
The grey line represents the 50% (equal to chance) detection rate. AUC-ROC values 
are reported in the text. Asterisks indicate when a subset of data was used, with 
aligned leaf and canopy measurement periods, to facilitate comparison with 
canopy-level data, for which collection began later than leaf-level data.  
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Supplementary Figure 1 Meteorological data for the duration of the experiment from 
sowing (DOY 158) to final measurement (DOY 226), obtained from the onsite weather 
station at Brookhaven National Laboratory. A, Mean photosynthetically active radiation 
(PAR) during daytime hours. B, mean daytime temperature (bright red) and mean nighttime 
temperature (dark red). C, total precipitation during each 24-hour period. D, maximum 
daily vapor pressure deficit (VPD) during daytime hours. Initiation of the sink manipulation 
treatment (DOY 196) is shown by a vertical arrow in panel D.  
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Supplementary Figure 2 Gas exchange data obtained from A/Ci curves performed on 
control and sink-limited plants during the course of the experiment. A, stomatal 
conductance (gs) at 400 µmol mol-1 CO2 under light-saturated, steady-state conditions; B, 
ratio of internal and external CO2 concentrations (Ci/Ca) at 400 µmol mol-1 CO2 under light-
saturated, steady-state conditions; C, light-saturated, stable rate of photosynthesis 
measured at 400 µmol mol-1 CO2 (Asat); D, maximum carboxylation rate of Rubisco (Vc,max) 
normalized to 25°C. Plots show means ± standard error. N = 2 plants. 
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Supplementary Figure 3 Boxplot of Green Chromatic Coordinate (GCC) in control and 
sink-limited plants at the end of the experiment (DOY 226), obtained from a UAS flight over 
the experimental field. 
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